Search results for "feedforward neural network"

showing 10 items of 19 documents

Hardware implementation of real-time Extreme Learning Machine in FPGA: Analysis of precision, resource occupation and performance

2016

Extreme Learning Machine (ELM) on-chip learning is implemented on FPGA.Three hardware architectures are evaluated.Parametrical analysis of accuracy, resource occupation and performance is carried out. Display Omitted Extreme Learning Machine (ELM) proposes a non-iterative training method for Single Layer Feedforward Neural Networks that provides an effective solution for classification and prediction problems. Its hardware implementation is an important step towards fast, accurate and reconfigurable embedded systems based on neural networks, allowing to extend the range of applications where neural networks can be used, especially where frequent and fast training, or even real-time training…

General Computer ScienceArtificial neural networkComputer sciencebusiness.industry020209 energyComputationTraining (meteorology)02 engineering and technologyRange (mathematics)Resource (project management)Control and Systems Engineering0202 electrical engineering electronic engineering information engineeringFeedforward neural network020201 artificial intelligence & image processingElectrical and Electronic EngineeringField-programmable gate arraybusinessComputer hardwareExtreme learning machineComputers & Electrical Engineering
researchProduct

Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?

2020

Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…

0209 industrial biotechnologyrandom projectionlcsh:Computer engineering. Computer hardwareComputational complexity theoryComputer scienceRandom projectionlcsh:TK7885-789502 engineering and technologyMachine learningcomputer.software_genresupervised learningapproximate algorithmsSet (abstract data type)regressioanalyysi020901 industrial engineering & automationdistance–based regressionalgoritmit0202 electrical engineering electronic engineering information engineeringordinary least–squaresbusiness.industrySupervised learningsingular value decompositionminimal learning machineMultilaterationprojektioRandomized algorithmkoneoppiminenmachine learningScalabilityFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceapproksimointibusinesscomputerMachine Learning and Knowledge Extraction
researchProduct

Unknown order process emulation

2002

Approaches the emulation problem using feedforward neural networks of single input single output (SISO) processes, applying a backpropagation method with a higher convergence rate. In this kind of application, difficult problems appear when the system's order is a priori unknown. A search through the SISO processes space is proposed, aiming to find a favorable neural emulator over the training examples set.

Set (abstract data type)EmulationRate of convergenceTime delay neural networkComputer scienceControl theoryComputer Science::Neural and Evolutionary ComputationLinear systemFeedforward neural networkBackpropagationIJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)
researchProduct

Investigation of vehicle crash modeling techniques: theory and application

2013

Published version of an article in the journal: The International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-013-5320-3 Creating a mathematical model of a vehicle crash is a task which involves considerations and analysis of different areas which need to be addressed because of the mathematical complexity of a crash event representation. Therefore, to simplify the analysis and enhance the modeling process, in this work, a brief overview of different vehicle crash modeling methodologies is proposed. The acceleration of a colliding vehicle is measured in its center of gravity—this crash pulse contains detailed informati…

VDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413Feedforward neural network; Lumped parameter models; Multiresolution analysis; Vehicle crash modeling; Control and Systems Engineering; Software; Mechanical Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Industrial and Manufacturing EngineeringEvent (computing)Computer scienceReliability (computer networking)Mechanical Engineeringvehicle crash modelingVDP::Technology: 500::Mechanical engineering: 570lumped parameter modelsCrashControl engineeringComputer Science Applications1707 Computer Vision and Pattern RecognitionCollisionIndustrial and Manufacturing EngineeringComputer Science Applicationsmultiresolution analysisAutoregressive modelControl and Systems Engineeringfeedforward neural networkRepresentation (mathematics)SimulationSoftwareMotor vehicle crash
researchProduct

Efficient MLP Digital Implementation on FPGA

2005

The efficiency and the accuracy of a digital feed-forward neural networks must be optimized to obtain both high classification rate and minimum area on chip. In this paper an efficient MLP digital implementation. The key features of the hardware implementation are the virtual neuron based architecture and the use of the sinusoidal activation function for the hidden layer. The effectiveness of the proposed solutions has been evaluated developing different FPGA based neural prototypes for the High Energy Physics domain and the automatic Road Sign Recognition domain. The use of the sinusoidal activation function decreases hardware resource employment of about 32% when compared with the standar…

Artificial neural networkbusiness.industryComputer scienceActivation functionField programmable gate arrays (FPGA)Sigmoid functionartificial neuralMachine learningcomputer.software_genreTransfer functionDomain (software engineering)Feedforward neural networkSystem on a chipArtificial intelligencebusinessField-programmable gate arraycomputerComputer hardwareNeural networks
researchProduct

Data-based modeling of vehicle collisions by nonlinear autoregressive model and feedforward neural network

2013

Vehicle crash test is the most direct and common method to assess vehicle crashworthiness. Visual inspection and obtained measurements, such as car acceleration, are used, e.g. to examine impact severity of an occupant or to assess overall car safety. However, those experiments are complex, time-consuming, and expensive. We propose a method to reproduce car kinematics during a collision using nonlinear autoregressive (NAR) model which parameters are estimated by the use of feedforward neural network. NAR model presented in this study is derived from the more general one - nonlinear autoregressive with moving average (NARMA). Suitability of autoregressive systems for data-based modeling was …

Nonlinear autoregressive exogenous modelInformation Systems and ManagementArtificial neural networkComputer scienceCrash testComputer Science ApplicationsTheoretical Computer ScienceAccelerationAutoregressive modelArtificial IntelligenceControl and Systems EngineeringMoving averageCrashworthinessFeedforward neural networkVehicle accelerationSoftwareSimulationInformation Sciences
researchProduct

A Feed-Forward Neural Network for Robust Segmentation of Color Images

1999

A novel approach for segmentation of color images is proposed. The approach is based on a feed-forward neural network that learns to recognize the hue range of meaningful objects. Experimental results showed that the proposed method is effective and robust even in presence of changing environmental conditions. The described technique has been tested in the framework of the Robot Soccer World Cup Initiative (RoboCup). The approach is fully general and it may be successfully employed in any intermediate level image-processing task, where the color is a meaningful descriptor.

Artificial neural networkbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONMobile robotTask (project management)Range (mathematics)GeographyFeedforward neural networkRobotComputer visionSegmentationArtificial intelligencebusinessHue
researchProduct

Extreme Learning Machines for Data Classification Tuning by Improved Bat Algorithm

2018

Single hidden layer feed forward neural networks are widely used for various practical problems. However, the training process for determining synaptic weights of such neural networks can be computationally very expensive. In this paper we propose a new learning algorithm for learning the synaptic weights of the single hidden layer feedforward neural networks in order to reduce the learning time. We propose combining the upgraded bat algorithm with the extreme learning machine. The proposed approach reduces the number of evaluations needed to train a neural network and efficiently finds optimal input weights and the hidden biases. The proposed algorithm was tested on standard benchmark clas…

0209 industrial biotechnologyQuantitative Biology::Neurons and CognitionArtificial neural networkComputer sciencebusiness.industryData classificationProcess (computing)Approximation algorithm02 engineering and technologyMachine learningcomputer.software_genre020901 industrial engineering & automationGenetic algorithm0202 electrical engineering electronic engineering information engineeringBenchmark (computing)Feedforward neural network020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerBat algorithm2018 International Joint Conference on Neural Networks (IJCNN)
researchProduct

A Multi-layer Feed Forward Neural Network Approach for Diagnosing Diabetes

2018

Diabetes is one of the worlds major health problems according to the World Health Organization. Recent surveys indicate that there is an increase in the number of diabetic patients resulting in an increase in serious complications such as heart attacks and deaths. Early diagnosis of diabetes, particularly of type 2 diabetes, is critical since it is vital for patients to get insulin treatments. However, diagnoses could be difficult especially in areas with few medical doctors. It is, therefore, a need for practical methods for the public for early detection and prevention with minimal intervention from medical professionals. A promising method for automated diagnosis is the use of artificial…

Artificial neural networkbusiness.industryComputer science02 engineering and technologyType 2 diabetes030204 cardiovascular system & hematologymedicine.diseaseMachine learningcomputer.software_genreMissing dataData set03 medical and health sciences0302 clinical medicineIntervention (counseling)Diabetes mellitus0202 electrical engineering electronic engineering information engineeringmedicineFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceMedical diagnosisbusinesscomputer2018 11th International Conference on Developments in eSystems Engineering (DeSE)
researchProduct

Deep Learning for Classifying Physical Activities from Accelerometer Data

2021

Physical inactivity increases the risk of many adverse health conditions, including the world’s major non-communicable diseases, such as coronary heart disease, type 2 diabetes, and breast and colon cancers, shortening life expectancy. There are minimal medical care and personal trainers’ methods to monitor a patient’s actual physical activity types. To improve activity monitoring, we propose an artificial-intelligence-based approach to classify the physical movement activity patterns. In more detail, we employ two deep learning (DL) methods, namely a deep feed-forward neural network (DNN) and a deep recurrent neural network (RNN) for this purpose. We evaluate the proposed models on two phy…

Fysisk aktivitetComputer scienceVDP::Informasjons- og kommunikasjonsteknologi: 550physical activityAccelerometercomputer.software_genresensorsBiochemistryMedical careRNNAnalytical Chemistry:Information and communication technology: 550 [VDP]Accelerometer dataAccelerometryartificial_intelligence_roboticsInstrumentationArtificial neural networkhealthAtomic and Molecular Physics and Opticsmachine learningclassificationHealthFeedforward neural network:Informasjons- og kommunikasjonsteknologi: 550 [VDP]Physical activityTP1-1185Movement activityMachine learningHelseFeed-forward neural networksVDP::Information and communication technology: 550ArticleFysisk aktiviteterMachine learningHumansAccelerometer dataElectrical and Electronic EngineeringExercisebusiness.industryPhysical activitySensorsDeep learningChemical technologydeep learningDeep learningfeed-forward neural networkRecurrent neural networkPhysical activitiesDiabetes Mellitus Type 2Recurrent neural networksaccelerometer dataUCIrecurrent neural networkNeural Networks ComputerArtificial intelligenceClassificationsbusinesscomputerDNN
researchProduct