Search results for "feedforward neural network"
showing 10 items of 19 documents
Hardware implementation of real-time Extreme Learning Machine in FPGA: Analysis of precision, resource occupation and performance
2016
Extreme Learning Machine (ELM) on-chip learning is implemented on FPGA.Three hardware architectures are evaluated.Parametrical analysis of accuracy, resource occupation and performance is carried out. Display Omitted Extreme Learning Machine (ELM) proposes a non-iterative training method for Single Layer Feedforward Neural Networks that provides an effective solution for classification and prediction problems. Its hardware implementation is an important step towards fast, accurate and reconfigurable embedded systems based on neural networks, allowing to extend the range of applications where neural networks can be used, especially where frequent and fast training, or even real-time training…
Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
2020
Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…
Unknown order process emulation
2002
Approaches the emulation problem using feedforward neural networks of single input single output (SISO) processes, applying a backpropagation method with a higher convergence rate. In this kind of application, difficult problems appear when the system's order is a priori unknown. A search through the SISO processes space is proposed, aiming to find a favorable neural emulator over the training examples set.
Investigation of vehicle crash modeling techniques: theory and application
2013
Published version of an article in the journal: The International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-013-5320-3 Creating a mathematical model of a vehicle crash is a task which involves considerations and analysis of different areas which need to be addressed because of the mathematical complexity of a crash event representation. Therefore, to simplify the analysis and enhance the modeling process, in this work, a brief overview of different vehicle crash modeling methodologies is proposed. The acceleration of a colliding vehicle is measured in its center of gravity—this crash pulse contains detailed informati…
Efficient MLP Digital Implementation on FPGA
2005
The efficiency and the accuracy of a digital feed-forward neural networks must be optimized to obtain both high classification rate and minimum area on chip. In this paper an efficient MLP digital implementation. The key features of the hardware implementation are the virtual neuron based architecture and the use of the sinusoidal activation function for the hidden layer. The effectiveness of the proposed solutions has been evaluated developing different FPGA based neural prototypes for the High Energy Physics domain and the automatic Road Sign Recognition domain. The use of the sinusoidal activation function decreases hardware resource employment of about 32% when compared with the standar…
Data-based modeling of vehicle collisions by nonlinear autoregressive model and feedforward neural network
2013
Vehicle crash test is the most direct and common method to assess vehicle crashworthiness. Visual inspection and obtained measurements, such as car acceleration, are used, e.g. to examine impact severity of an occupant or to assess overall car safety. However, those experiments are complex, time-consuming, and expensive. We propose a method to reproduce car kinematics during a collision using nonlinear autoregressive (NAR) model which parameters are estimated by the use of feedforward neural network. NAR model presented in this study is derived from the more general one - nonlinear autoregressive with moving average (NARMA). Suitability of autoregressive systems for data-based modeling was …
A Feed-Forward Neural Network for Robust Segmentation of Color Images
1999
A novel approach for segmentation of color images is proposed. The approach is based on a feed-forward neural network that learns to recognize the hue range of meaningful objects. Experimental results showed that the proposed method is effective and robust even in presence of changing environmental conditions. The described technique has been tested in the framework of the Robot Soccer World Cup Initiative (RoboCup). The approach is fully general and it may be successfully employed in any intermediate level image-processing task, where the color is a meaningful descriptor.
Extreme Learning Machines for Data Classification Tuning by Improved Bat Algorithm
2018
Single hidden layer feed forward neural networks are widely used for various practical problems. However, the training process for determining synaptic weights of such neural networks can be computationally very expensive. In this paper we propose a new learning algorithm for learning the synaptic weights of the single hidden layer feedforward neural networks in order to reduce the learning time. We propose combining the upgraded bat algorithm with the extreme learning machine. The proposed approach reduces the number of evaluations needed to train a neural network and efficiently finds optimal input weights and the hidden biases. The proposed algorithm was tested on standard benchmark clas…
A Multi-layer Feed Forward Neural Network Approach for Diagnosing Diabetes
2018
Diabetes is one of the worlds major health problems according to the World Health Organization. Recent surveys indicate that there is an increase in the number of diabetic patients resulting in an increase in serious complications such as heart attacks and deaths. Early diagnosis of diabetes, particularly of type 2 diabetes, is critical since it is vital for patients to get insulin treatments. However, diagnoses could be difficult especially in areas with few medical doctors. It is, therefore, a need for practical methods for the public for early detection and prevention with minimal intervention from medical professionals. A promising method for automated diagnosis is the use of artificial…
Deep Learning for Classifying Physical Activities from Accelerometer Data
2021
Physical inactivity increases the risk of many adverse health conditions, including the world’s major non-communicable diseases, such as coronary heart disease, type 2 diabetes, and breast and colon cancers, shortening life expectancy. There are minimal medical care and personal trainers’ methods to monitor a patient’s actual physical activity types. To improve activity monitoring, we propose an artificial-intelligence-based approach to classify the physical movement activity patterns. In more detail, we employ two deep learning (DL) methods, namely a deep feed-forward neural network (DNN) and a deep recurrent neural network (RNN) for this purpose. We evaluate the proposed models on two phy…